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LETTER TO THE EDITOR 

Gardner-Derrida neural networks with correlated patterns 

W K Theumann and Rubem Erichsen Jr 
lnstituto de  Fkica, Univenidade Federal d o  Rio Grande do SUI. Caixa.Postal 15051. 
91500 Port0 Alegre, RS, Brazil 

Received 5 February 1991 

Abstract. T h e  storage prapenies of an optimal neural network with correlated patterns is 

function. A discontinuity in the probability distribution of the local stabilities is seen as a 
drastic decrease in the minimal fraction of errors. There is also an enlargement of the 
domain in which the replica symmetric solution is stable, allowing for higher storage 
capacities. 
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Le.E!lng In 2f!TBC!OT neur.! ne!warks Bmonn!s !o arg2nizing the sp2se of network 
states into basins of attraction of preassigned memories [I]. A crucial role in organizing 
the network space is played by the synaptic matrix { J J  between a pair of neurons i 
and j .  Considering the J+s as dynamical variables, which need not be explicitly 
prescribed in terms of the stored pattems 6; = *1 ( i  = 1 , .  . . , N ;  p = 1, .  . . , p )  as in 
the Hopfield approach [1,2], Gardner [3] has shown how to calculate the storage 
capacity (i.e. the maximum ratio a = p !  N )  for the optimal network. This is a network 
in which all the stored patterns, which are fixed points of the dynamics, have finite 
(non-zero) basins of attraction that are guaranteed when the local stabilities 

with the field h r  at site i, satisfy the inequalities 

A?> K 

for every i and p, where K is a positive constant. The constraint 

is usually imposed to account for the freedom in K due to an overall scaling. 
Gardner and Derrida [4] have shown how to go beyond the storage capacity of 

the optimal network allowing for a minimal fraction of violations of (2) that is 
independent of their size and determined by the cost function 

E = E  O ( K - A r )  (4) 
i.* 

... I---- ~ 1 " )  - 1 Fn- v > n nnrl v ~ r n  n+hnmw;eP 
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The minimal fraction of errors, fmin, is related to the minimum average 'energy' Eo 
by pf,;. = Eo, where 

d 
h-m dh 

Eo= lim -(lnZ(b)),c~, 

0305.4470/91/100565+07303.50 0 1991 IOP Publishing Ltd L565 



L566 Letter to the Editor 

in which 

Z =(ex~[-hE({J,J)l)~,,,~ (6) 

is the canonical partition function. The averages ( . . .) are either over the probability 
distribution of the stored patterns { f r }  or over the continuous dynamical variables 
{Jv}  satisfying the constraint (3). 

When the replica method [5] is used to do the average over the quenched I f f }  the 
overlap [3,4] 

appears between every pair of replicas a and p .  Assuming replica symmetry, where 
q = q for aii a f j3, the criticai storage capacity ac is reached through a singie 
ground-state configuration in the limit q + 1. It is relevant to know the boundary of 
the stability region in the (a, K )  plane against replica-symmetry breaking, and this is 
now known for random patterns with a non-zero minimal fraction of errors [4]. 

Correlations between patterns are known to increase considerably the storage 
capacity of a network, albeit at the expense of the information content [ 3 , 6 ] .  In this 
note we consider the minimal fraction of errors and the storage capacity of networks 
that are ruled by  the Gardner-Derrida [4] cost function using biased patterns with the 
statistically independent probability distribution [3,6]: 

OB 

p ( f r )  = $ ( I  +p)~(f ’ -  l ) + f ( l  -a )S( f?+ 1) (8) 

for each i and F, where a E [ -1 ,1] .  This accounts for effective correlations ( f r f ; )  = a*, 
for p # v. We restrict ourselves to the replica symmetric theory in which there is a 
second ‘order’ parameter M = M DI for all a, where 

Our results are as follows. First, there is a discontinuity in M ( K )  for a non-zero 
minimal fraction of errors. This leads always to a discontinuity in the ground-state 
energy Eo and to a lower minimal fraction of errors, excluding thus a first-order 
transition in M. Note that h is an inverse temperature variable in equation (6) and in 
the zero temperature limit in (5) a first-order transition would require the same energy 
for two phases with different M. Second, on a somewhat more basic level, a discontinuity 
also appears in the distribution 

of local stabilities [7] in which the average is over both {Jg) and the distribution of 
stored patterns. This distribution is of interest in itself since it belongs to a universality 
class discussed recently [8]. Third, the discontinuity in M ( K )  leads to a larger domain 
of stability for the replica symmetric solution in the (a, K )  plane, with a considerable 
increase in the storage capacity a for a given K, at fixed a. In the following we only 
present and discuss our results which are based on now standard calculations [4,8,9]. 

The natural variable for the network near saturation in the limit h -+ 00 and q + 1 
is [4] 
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which remains finite and is given by the solution of the equation 

only for a > a<, i.e., beyond the critical storage capacity of the errorless network of 
Gardner [3], determined by 

Dz(z-K_)’+f(l-a) 

in which 

and 

K, = ( K  * ~ M ) / J L ? .  (15) 

Equation (12) is solved together with the equation for M, 

x. x* 

( l + a ) L x  Dz(2-L)  = (1 - a )  Dz(z-K+) (16) Lx 
and, for simplicity, we assume a zero threshold in the state updating rule [3]. 

If  a S a,, we have x = a? and, accordingly, 

fmi. = 0 (17) 
recovering the Gardner results. On the other hand, for a > ac we find 

fmin=f ( l  + a ) H ( x - L ) + f ( l -  n ) H ( x  - K + )  (18) 

in which x is given by the solution of equation (12) and 
m 

H ( y ) =  [ ‘Dz. 
J Y  

For the normalized probability distribution of local stabilities, equation (lo), we 
obtain [8,9] 

p ( A )  = f (  1 +a)b+(A)+f(l  - a ) b - ( A )  (20) 

where 

1 
;SA) = exp[-(AT ~ M ) ~ / 2 ( 1  -a’)] 

X [ O ( A - K ) +  O ( K  - X - A ) ] + [ H ( K I - X ) - H H ( K F ) ] ~ ( A -  K )  (21) 

where 2, is given by (15) .  Besides the sharp gap K - x < A <  K and the Gaussian tail 
at extreme negative values of A, also present in the case of random patterns ( a  = 0) 
[9], one has now shifts in the Gaussian and in the complementary error functions 
H ( y ) ,  due to the overlap between stored patterns. There is the same shift of *aM and 
a ‘renormalization’ with (1  - in both parts ofb,(A). In this way, the distribution 
of local stabilities belongs to one of the universality classes discussed by Abhott and 
Kepler [8]. If there is a discontinuity in M, as we will see next, these shifts will he 



L568 Letter to the Editor 

discontinuous and so will be p ( A ) .  These discontinuities vanish in the low-activity 
limit a + 1. 

Incidentally, the minimal fraction of errors is recovered through the relationship [ 101 

A i n =  (" p ( A )  dA. (22) 
-m 

To illustrate analytically the discontinuity in M, consider the solution of equation 
(i6) for sad; ci. TO :owes; d e i  WE fin3 

in which the denominator is 

D(K,  x )  =err( 5) - erf( z) - x exp[-(K - x) ' /2 ]  (24) 

and where 

is the error function. For fixed and finite x, that is when f,,, # 0 for a > a,, D ( K ,  x )  
starts being positive for small K and changes sign at intermediate values while the 
numerator remains positive, leading to a divergent discontinuity. The behaviour for 
fixed a can be obtained from the numerical solution of (16) and the result is shown 
in figure 1 for a = 3 > a.(K = 0 )  and four values of a. Note that there are always two 
branches. Similar results are obtained for U < a,( K = 0) if K > K < ( L I ) ,  the value of K on 
the critical storage curve (cf figure 3, below). 

The reader is reminded that J; /v% is the expansion parameter in Gardner's 
procedure and that M" may become very large. If the J,  were random and the learning 
rule is the perceptron algorithm discussed by Gardner [3], or an improved version of 

I 0.3 

O'l 

.... .......................... .. I +..-: .... 
-.. ......................... 0.5 

...... .... 0.3 .... 
.._.. 

.-. ._ 

..__ 

Figure 1. Order parameter M, equation (9 ) .  as a function of I for O = ~ > O L ~ ( I  =O), the 
limiting critical storage capacity, and n =O.Ol ,  0.1, 0.3 and 0.5. 
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it [ l l l ,  M" would be of O(1) but, otherwise, as in the case of correlated patterns, it 
does not have to be so. 

The minimal fraction of errors, given by (18), is shown in figure 2, where the full 
curves for non-zero a correspond to the upper branch in figure 1.  For reference, fmi. 

for unbiased patterns is also shown there. Of course, only the lower branch can be 
thought as a true minimal fraction of errors. The reason for the rapid drop in fm,- is 
the increasingly large aM in equations (18) and (19) as a becomes vanishingly small, 
withthelimitingbehaviourf,,.=~(I -a) a l r e a d y f o r ~  --.Thus, thereisadiscontinuity 
in the limit a + 0. 

We consider next the critical line for replica symmetry breaking. Following Gardner 
and Derrida [4] in adapting the de Almeida and Thouless analysis for the spin-glass 
problem [ 121, we find that the replica symmetric solution is unstable and the expression 
for the minimal fraction of errors unjustified when 

X 
- {f( 1 + a )  exp[ -f(z- - x)'] +$( 1 - a )  exp[-f(z+ - x ) ~ ] }  G 

> '(l+a)K_ D z ( L  - z ) + f ( l  - a ) i +  D z ( ~ + - z )  1 . (26) 
I 2  L 

The critical lines for replica symmetry breaking (RSB) for various values of a are 
shown in figure 3 where on the left are the curves for the critical storage capacity of 
the optimal network (fmin = 0) and the locus of fmi. = 0.05, extrapolating the replica 
symmetry results. The branches in the full curves correspond to the solutions for M 
that yield the true lower fmin of figure 2. These lines are always below the unphysical 
solutions, shown in the short broken curves, that correspond to the other branch of 
M, and also here one has a discontinuity in the critical line for replica symmetry 
breaking as n + 0 ,  leading to a sizeable increase of the domain where the replica 
calculations of this work are applicable. 

The dramatic increase in storage capacity for a given K beyond a certain minimum 
near the critical line is possible only with an increasingly large minimal fraction of 
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Figure 2. Minimal fraction of errors. in full curves, as a function of Y for e = 3 > a C ( x  =O) 
and o = O , O . O l ,  0.1,0.3 and 0.5. The branch in the broken curves corresponds 10 the lower 
pan in figure 1. 
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Figure 3. Critical storage capacity n , ( ~ )  for the optimal network and critical lines for 
replica symmetry breaking (Rsn) shown in the full curves, for n =0.1, 0.3, 0.5 and n = 0 ,  
for reference. There is a gap that is filled in by the unphysical solution in the previous 
figures shown in the short broken curves. The locus of fmi,=0.O5 is also shown (in the 
long broken curves) extrapolating the replica symmetry results. 

errors. The lines of constant Jmin > 0.05, not shown for clarity in figure 3, progress 
towards larger a with increasing Jmi.. However, due to the tail in p ( h )  for for negative 
A, an increase in the storage capacity through a violation of (2) does not guarantee 
an  attractor and one may have to include noise in order to have a network that is 
useful for retrieval [9]. The effects of noise with correlated patterns will be discussed 
elsewhere. 

Preliminary results for the first-step hierarchical replica-symmetry breaking scheme 
of Parisi [13, 141, in terms of two overlaps, 9" and ql, their conjugate variables and 
the additional order parameter m, indicate that the only solution of the saddle-point 
equations [3] seems to be the trivial one: qo = 9, and m = 0 of the replica symmetric 
theory [15], when a = 0, justifying a further study of this point. 

It should also be interesting to construct the synaptic matrix for correlated patterns 
by means of a generalized perceptron learning rule. This and other issues will be 
considered in future work. 

This work was supported in part by CNPq-Conselho Nacional de Desenvolvimento 
Cienthico e Technol6gico and FINEP-Financiadora de Estudos e Projetos, Brazil. 
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